, Tavis Ormandy @taviso

Jul 20, 2024 - 9 tweets

This strange tweet got >25k retweets. The author sounds confident, and he uses lots of hex and jargon.
There are red flags though... like what's up with the DEI stuff, and who says "stack trace dump"? Let's
take a closer look... ® 1/n

Crowdstrike Analysis:
It was a NULL pointer from the memory unsafe C++ language.

Since 1 am a professional C++ programmer, let me decode this stack trace
dump for you.

£££802 al (csagent+0x00000000000e3Sal
cO000005 (Acce
00000000
0000000000000000
1: 0000000000O000%
d from address 00000000000000%9c
e I e T

0 rcx=0000000000000003%

Jad rdi=ffff{9aBlb596605c

60 rbp=£ffffb0d18dIet 60

00 0 r10=0000000000000000

k- 11=0000000000000014 2efffffb0d18dImi2® r13=£f£Efb0d18436040
fr14=000000000000C r15=0000000000000004

na po nc
ds=002b es=002b f5=0053 gs=002b ef1=00050206

1dt 1 458b08 now rid.dvord ptr [r8) ds:002b: 00000000 000000%c=7772777

d
tting default scope

LACKBOXESD: 1 (!black
SLACKBOXNTFS
LACKBOXPHP: 1 (L

LACKBOXVINLOGON: 1
PROCESS_WAME: System
00000000000000%
RTSTATUS) 0OxcO000005 - The instruction at Ox¥p referesced memory Oxp. The memory could not
T <0000005

PTION_PARAMETER1 0000000000000000

PTION_PARAMETER2 00000000000000%c

EPTION_STR Oxc000D00S

00000000° 0000 00 0 elli008d

18d3£5d0 0

] 0 £f
00000 I 10000
0 0 0
d’ 18d3£790 £4 9a8l 992chb30

This is actually a screenshot of !analyze -v output, I think the author conflated "stack trace" and

"minidump". Regardless, he only looks at the decoded exception record and concludes "it was a NULL
pointer"...? (5
It is a plausible explanation, 0x9c is not NULL, but dereferencing near-NULL addresses can have the

same root cause. He explains that the code was reading a field at offset 156 from a NULL object pointer.
3/n

https://threadreaderapp.com/
https://threadreaderapp.com/user/taviso
https://twitter.com/taviso/status/1814762302337654829
https://threadreaderapp.com/user/taviso
https://pbs.twimg.com/media/GS9HY7wbYAAsVS0.png

Now let's assume the following:

Obj* obj = NULL;

Then the address of:
objis 0

obj->ais0 + 4
obj->bis0 + 8

So if | do this on a NULL pointer:
print(obj->a);

The program stack dump like what you'll see above. It will cannot read
value 0x000000004

Well, except... we can see in his screenshot that MSVC generated mov r9d, [r8]? That's really odd... I
spend half my life looking at MSVC output, and I would expect to see mov r9d, [r8+0x9c], so what's up
with that? 4/n

ef 1=00050206

o rid. dverd ptr [r8) ds:002b 00000000° 00(

Maybe I'm wrong, let's test it in godbolt . Nope, the code doesn't match! The code is either more
complicated, or his hypothesis is incorrect. There is a way to check, he could type "u" (unassemble) into

kd and examine the surrounding code. 5/n

Compiler Explorer - C (x64 msvc v19.latest)
struct Obj { int a; int b; int c[37]; int d; }; struct Obj *obj; extern int print(int); void
test() { print(obj->d); }

https://pbs.twimg.com/media/GS9ORMebIAAhl77.png
https://pbs.twimg.com/media/GS9Oy1ObIAci-YV.jpg
https://godbolt.org/z/sdz4PGxxo
https://godbolt.org/z/sdz4PGxxo

—¢ COMPILER , - - - -
= Add..> More~ Templates Share > Policies > Other~
EXPLORER " : e
C source #1 2 O | x64 msvc vi9.latest (Editor #1) & X o x
A- B +- v @®cC - x64 msvc v19.latest ~ | @ Compileropt |~
s i
1 struct Obj { A~ @~ Y- B F +~ /-~
2 int a; -
3 int b 1 # License: MSVC Proprietary .
J : : : s
4 int c[371; 2 # The use of this compiler is only permitt -%
5 int d: 3 # See https://visualstudio.microsoft.com/1
6 1. ’ 4 _DATA SEGMENT
7 > 5 COMM obj:QWORD
8 struct Obj *obj; 6 _DaTA ENDS
9 7
10 extern int print(int); 8 fest PROC
1 - 9 $LN3:
12 void test() 19 S LY
13 ¢ 11 mow rax, QWORD PTR obj
14 R i 1 mov ecx, DWORD PTR [rax+156]
15 B 13 call print
3
14 1
15 add rsp, 4@
16 ret @

17 test ENDP

He didn't, but we still can! His version of the faulting module has the bytes 45 8b 08 at
csagent+0xe35al, I found that version in VT, and had a look. In fact, there *is* a NULL check (test r8,

18; jz) immediately before the dereference, so his theory is provably *wrong* @ 6/n

BBE359C

BBE359C loc_14@@E359C: ; CODE XF
#ME359C 40 85 C@ test rg, ré

BBE3ISOF 74 @7 jz short loc_148@E35A3
BBE3SAL 45 3B B8 mov rad, [r8]

This code is reading pointers from a table in a loop, and some are invalid. Perhaps an error parsing a

configuration file left some entries uninitialized, and one just happened to be 0x9¢? It's just a theory, but

at least mine fits the facts®&

Here is the same crash seen by Patrick, except he saw the entry 0xffff9c8e00000008a, nowhere near
NULL! If this is uninitialized data, perhaps it was okay during testing and that's why CS didn't catch it
K

https://twitter.com/patrickwardle/status/1814343502886477857

It's amusing to me that Patrick (who actually knows what he's doing) realizes this is complicated, so
hedged his analysis with "(initial) details"... but this guy just rocks up with "I'm a professional!!" and
gets 25k retweets &

https://pbs.twimg.com/media/GS9PgqgbYAARYUF.png
https://pbs.twimg.com/media/GS9QaDWbMAAmn4B.png
https://twitter.com/patrickwardle/status/1814343502886477857

